1
2 """
3 Created on Mon Apr 22 11:13:02 2013
4
5 Copyright (c) 2013-2014, CEA/DSV/I2BM/Neurospin. All rights reserved.
6
7 @author: Tommy Löfstedt
8 @email: tommy.loefstedt@cea.fr
9 @license: BSD 3-clause.
10 """
11 import numpy as np
12
13 __all__ = ['load', 'labels']
14
15
17 X_agric = np.asarray([[86.3, 98.2, 3.52],
18 [92.9, 99.6, 3.27],
19 [74.0, 97.4, 2.46],
20 [58.7, 85.8, 4.15],
21 [93.8, 97.7, 3.04],
22 [83.7, 98.5, 2.31],
23 [49.7, 82.9, 2.10],
24 [93.8, 99.7, 2.67],
25 [84.9, 98.1, 2.57],
26 [88.1, 99.1, 1.86],
27 [79.2, 97.8, 4.00],
28 [45.8, 79.3, 1.50],
29 [79.5, 98.5, 3.08],
30 [86.4, 99.3, 2.75],
31 [74.0, 98.1, 2.53],
32 [82.8, 98.8, 2.78],
33 [59.9, 86.3, 1.22],
34 [58.3, 86.1, 3.30],
35 [86.0, 99.7, 2.89],
36 [74.7, 99.4, 2.93],
37 [75.7, 97.4, 2.87],
38 [52.2, 86.9, 3.99],
39 [88.1, 99.3, 4.33],
40 [59.8, 85.9, 1.25],
41 [80.3, 98.0, 3.21],
42 [47.0, 81.5, 1.36],
43 [70.0, 93.0, 2.25],
44 [63.8, 87.7, 2.99],
45 [60.5, 86.2, 3.99],
46 [77.3, 95.5, 3.15],
47 [75.7, 96.4, 2.39],
48 [66.9, 87.5, 2.14],
49 [73.7, 95.0, 2.59],
50 [87.5, 96.9, 2.61],
51 [56.4, 88.2, 3.65],
52 [45.0, 77.7, 0.00],
53 [67.1, 94.6, 3.04],
54 [78.0, 99.5, 3.80],
55 [57.7, 87.2, 2.99],
56 [49.8, 81.5, 2.99],
57 [65.2, 94.1, 3.71],
58 [71.0, 93.4, 3.82],
59 [70.5, 95.4, 3.06],
60 [81.7, 96.6, 3.58],
61 [90.9, 99.3, 3.07],
62 [67.4, 93.0, 1.90],
63 [43.7, 79.8, 0.00]])
64
65 X_ind = np.asarray([[5.92, 3.22],
66 [7.10, 2.64],
67 [6.28, 3.47],
68 [6.92, 2.30],
69 [4.19, 4.28],
70 [5.57, 4.11],
71 [7.42, 2.48],
72 [5.19, 3.40],
73 [5.80, 4.01],
74 [5.73, 4.01],
75 [5.89, 3.74],
76 [6.82, 3.14],
77 [5.32, 4.03],
78 [5.32, 3.97],
79 [4.89, 4.16],
80 [5.50, 4.14],
81 [6.85, 3.83],
82 [6.95, 3.26],
83 [5.19, 4.22],
84 [5.48, 3.87],
85 [4.92, 4.19],
86 [4.28, 4.26],
87 [5.27, 4.39],
88 [6.23, 3.69],
89 [6.09, 3.37],
90 [5.48, 3.69],
91 [4.50, 4.32],
92 [7.09, 3.14],
93 [6.56, 2.40],
94 [7.14, 2.77],
95 [5.54, 4.22],
96 [6.88, 3.26],
97 [5.86, 3.99],
98 [4.94, 4.09],
99 [5.30, 4.08],
100 [6.15, 4.04],
101 [4.89, 4.17],
102 [5.54, 3.91],
103 [7.06, 2.56],
104 [7.11, 2.30],
105 [4.88, 3.91],
106 [6.91, 1.61],
107 [7.76, 2.30],
108 [6.34, 3.61],
109 [6.64, 3.74],
110 [6.64, 2.64],
111 [5.69, 4.20]])
112
113 X_polit = np.asarray([[0, 0],
114 [1, 0],
115 [0, 0],
116 [1, 0],
117 [0, 1],
118 [0, 0],
119 [1, 0],
120 [0, 0],
121 [0, 0],
122 [0, 0],
123 [0, 1],
124 [1, 0],
125 [0, 1],
126 [0, 1],
127 [0, 1],
128 [0, 1],
129 [0, 0],
130 [0, 0],
131 [0, 1],
132 [0, 0],
133 [0, 1],
134 [1, 0],
135 [0, 1],
136 [1, 0],
137 [0, 0],
138 [0, 0],
139 [0, 1],
140 [1, 0],
141 [1, 0],
142 [1, 0],
143 [0, 1],
144 [1, 0],
145 [0, 1],
146 [0, 1],
147 [0, 1],
148 [0, 1],
149 [0, 1],
150 [0, 1],
151 [1, 0],
152 [1, 0],
153 [0, 1],
154 [1, 0],
155 [1, 0],
156 [1, 0],
157 [0, 1],
158 [0, 0],
159 [0, 1]])
160
161 return X_agric, X_ind, X_polit
162
163
165 return [("gini", "farm", "rent"),
166 ("gnpr", "labo"),
167 ("demostab", "dictatur")]
168