Package parsimony :: Package datasets :: Package simulate :: Module grad
[hide private]
[frames] | no frames]

Module grad

source code

Created on Thu Sep 26 12:06:07 2013

Copyright (c) 2013-2014, CEA/DSV/I2BM/Neurospin. All rights reserved.


Author: Tommy Löfstedt, Edouard Duchesnay

License: BSD 3-clause.

Classes [hide private]
  Function
  L1
  SmoothedL1
  L2
  L2Squared
  NesterovFunction
  TotalVariation
  GroupLasso
  SmoothedTotalVariation
  SmoothedGroupLasso
  SmoothedGroupTotalVariation
Functions [hide private]
 
grad_l1(beta, rng=RandomUniform(-1,1))
Sub-gradient of the function
source code
 
grad_l1mu(beta, mu)
Gradient of the function
source code
 
grad_l2(beta, rng=RandomUniform(0,1))
Sub-gradient of the function
source code
 
grad_l2_squared(beta, rng=None)
Gradient of the function
source code
 
grad_tv(beta, A, rng=RandomUniform(0,1)) source code
 
grad_gl(beta, A, rng=RandomUniform(-1,1)) source code
 
grad_tvmu(beta, A, mu) source code
 
grad_glmu(beta, A, mu) source code
 
grad_grouptvmu(beta, A, mu) source code
 
_Nesterov_GroupTV_project(a)
Projection onto the compact space of the smoothed Group TV function.
source code
 
_Nesterov_grad(beta, A, rng=RandomUniform(-1,1), grad_norm=<function grad_l2 at 0x32d49b0>) source code
 
_Nesterov_grad_smoothed(A, alpha) source code
 
_Nestetov_alpha(beta, A, mu, proj)
Dual variable of the Nesterov function.
source code
 
_Nesterov_project(alpha) source code
 
_Nesterov_TV_project(alpha)
Projection onto the compact space of the smoothed TV function.
source code
Variables [hide private]
  __package__ = 'parsimony.datasets.simulate'
Function Details [hide private]

grad_l1(beta, rng=RandomUniform(-1,1))

source code 
Sub-gradient of the function

    f(x) = |x|_1,

where |x|_1 is the L1-norm.

grad_l1mu(beta, mu)

source code 
Gradient of the function

    f(x) = L1(mu, x),

where L1(mu, x) is the Nesterov smoothed L1-norm.

grad_l2(beta, rng=RandomUniform(0,1))

source code 
Sub-gradient of the function

    f(x) = |x|_2,

where |x|_2 is the L2-norm.

grad_l2_squared(beta, rng=None)

source code 
Gradient of the function

    f(x) = (1 / 2) * |x|²_2,

where |x|²_2 is the squared L2-norm.