Class LinearRegressionL2SmoothedL1TV
source code
object --+
|
BaseEstimator --+
|
RegressionEstimator --+
|
LinearRegressionL2SmoothedL1TV
Linear regression with L2 and simultaneously smoothed L1 and TV
penalties:
f(beta, X, y) = (1 / (2 * n)) * ||Xbeta - y||²_2
+ (l2 / 2) * ||beta||²_2
+ L1TV(beta),
where L1TV is l1 * L1(beta) + tv * TV(beta) smoothed together by Nesterov's
smoothing.
Parameters
----------
l2 : Non-negative float. The Lagrange multiplier, or regularisation
constant, for the ridge (L2) penalty.
l1 : Non-negative float. The Lagrange multiplier, or regularisation
constant, for the L1 penalty.
tv : Non-negative float. The Lagrange multiplier, or regularisation
constant, of the TV function.
A : A list or tuple with 4 elements of (usually sparse) arrays. The linear
operator for the smoothed L1+TV. The first element must be the
linear operator for L1 and the following three for TV. May not be
None.
algorithm : ExplicitAlgorithm. The algorithm that should be applied.
Should be one of:
1. ExcessiveGapMethod(...)
Default is ExcessiveGapMethod(...).
algorithm_params : A dict. The dictionary algorithm_params contains
parameters that should be set in the algorithm. Passing
algorithm=ExcessiveGapMethod(**params) is equivalent to passing
algorithm=ExcessiveGapMethod() and algorithm_params=params. Default
is an empty dictionary.
penalty_start : Non-negative integer. The number of columns, variables
etc., to be exempt from penalisation. Equivalently, the first
index to be penalised. Default is 0, all columns are included.
mean : Boolean. Whether to compute the squared loss or the mean squared
loss. Default is True, the mean squared loss.
Examples
--------
>>> import numpy as np
>>> import parsimony.estimators as estimators
>>> import parsimony.algorithms.primaldual as primaldual
>>> import parsimony.functions.nesterov.l1tv as l1tv
>>> shape = (1, 4, 4)
>>> n = 10
>>> p = shape[0] * shape[1] * shape[2]
>>>
>>> np.random.seed(42)
>>> X = np.random.rand(n, p)
>>> y = np.random.rand(n, 1)
>>> l1 = 0.1 # L1 coefficient
>>> l2 = 0.9 # Ridge coefficient
>>> tv = 1.0 # TV coefficient
>>> A = l1tv.linear_operator_from_shape(shape, p, penalty_start=0)
>>> lr = estimators.LinearRegressionL2SmoothedL1TV(l2, l1, tv, A,
... algorithm=primaldual.ExcessiveGapMethod(),
... algorithm_params=dict(max_iter=1000),
... mean=False)
>>> res = lr.fit(X, y)
>>> error = lr.score(X, y)
>>> round(error, 14)
0.06837304969156
|
__init__(self,
l2,
l1,
tv,
A=None,
algorithm=None,
algorithm_params={ } ,
penalty_start=0,
mean=True)
x.__init__(...) initializes x; see help(type(x)) for signature |
source code
|
|
|
|
|
|
|
|
Inherited from RegressionEstimator :
predict
Inherited from BaseEstimator :
get_info ,
parameters ,
set_params
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__repr__ ,
__setattr__ ,
__sizeof__ ,
__str__ ,
__subclasshook__
|
Inherited from object :
__class__
|
__init__(self,
l2,
l1,
tv,
A=None,
algorithm=None,
algorithm_params={ } ,
penalty_start=0,
mean=True)
(Constructor)
| source code
|
x.__init__(...) initializes x; see help(type(x)) for signature
- Overrides:
object.__init__
- (inherited documentation)
|