Class LogisticRegression
source code
object --+
|
BaseEstimator --+
|
LogisticRegressionEstimator --+
|
LogisticRegression
Logistic regression (re-weighted log-likelihood aka. cross-entropy):
f(beta) = -loglik / n_samples
where
loglik = Sum wi * (yi * log(pi) + (1 − yi) * log(1 − pi)),
pi = p(y=1|xi, beta) = 1 / (1 + exp(-xi'*beta)),
wi = weight of sample i.
Parameters
----------
algorithm : ExplicitAlgorithm. The algorithm that should be applied.
Should be one of:
1. GradientDescent(...)
Default is GradientDescent(...).
algorithm_params : A dict. The dictionary algorithm_params contains
parameters that should be set in the algorithm. Passing
algorithm=MyAlgorithm(**params) is equivalent to passing
algorithm=MyAlgorithm() and algorithm_params=params. Default is
an empty dictionary.
class_weight : Dict, 'auto' or None. If 'auto', class weights will be
given inverse proportional to the frequency of the class in
the data. If a dictionary is given, keys are classes and values
are corresponding class weights. If None is given, the class
weights will be uniform.
penalty_start : Non-negative integer. The number of columns, variables
etc., to be exempt from penalisation. Equivalently, the first
index to be penalised. Default is 0, all columns are included.
mean : Boolean. Whether to compute the squared loss or the mean squared
loss. Default is True, the mean squared loss.
Examples
--------
>>> import numpy as np
>>> import parsimony.estimators as estimators
>>> import parsimony.algorithms.gradient as gradient
>>> import parsimony.functions.nesterov.tv as total_variation
>>> shape = (1, 4, 4)
>>> n = 10
>>> p = shape[0] * shape[1] * shape[2]
>>>
>>> np.random.seed(42)
>>> X = np.random.rand(n, p)
>>> y = np.random.randint(0, 2, (n, 1))
>>> lr = estimators.LogisticRegression(
... algorithm=gradient.GradientDescent(max_iter=1000),
... mean=False)
>>> res = lr.fit(X, y)
>>> error = lr.score(X, y)
>>> print "error = ", error
error = 1.0
|
__init__(self,
algorithm=None,
algorithm_params={ } ,
class_weight=None,
penalty_start=0,
mean=True)
x.__init__(...) initializes x; see help(type(x)) for signature |
source code
|
|
|
|
|
fit(self,
X,
y,
beta=None,
sample_weight=None)
Fit the estimator to the data. |
source code
|
|
Inherited from LogisticRegressionEstimator :
predict ,
predict_probability ,
score
Inherited from BaseEstimator :
get_info ,
parameters ,
set_params
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__repr__ ,
__setattr__ ,
__sizeof__ ,
__str__ ,
__subclasshook__
|
Inherited from object :
__class__
|
__init__(self,
algorithm=None,
algorithm_params={ } ,
class_weight=None,
penalty_start=0,
mean=True)
(Constructor)
| source code
|
x.__init__(...) initializes x; see help(type(x)) for signature
- Overrides:
object.__init__
- (inherited documentation)
|