Class LogisticRegressionL1L2TV
source code
object --+
|
BaseEstimator --+
|
LogisticRegressionEstimator --+
|
LogisticRegressionL1L2TV
Logistic regression (re-weighted log-likelihood aka. cross-entropy)
with L1, L2 and TV penalties:
f(beta) = -loglik / n_samples
+ l1 * ||beta||_1
+ (l2 / 2) * ||beta||²_2
+ tv * TV(beta)
where
loglik = Sum wi * (yi * log(pi) + (1 − yi) * log(1 − pi)),
pi = p(y=1|xi, beta) = 1 / (1 + exp(-xi'*beta)),
wi = weight of sample i.
Parameters
----------
l1 : Non-negative float. The Lagrange multiplier, or regularisation
constant, for the L1 penalty.
l2 : Non-negative float. The Lagrange multiplier, or regularisation
constant, for the ridge (L2) penalty.
tv : Non-negative float. The Lagrange multiplier, or regularisation
constant, of the TV function.
A : Numpy or (usually) scipy.sparse array. The linear operator for the
smoothed total variation Nesterov function. A must be given.
mu : Non-negative float. The regularisation constant for the smoothing.
algorithm : ExplicitAlgorithm. The algorithm that should be applied.
Should be one of:
1. CONESTA(...)
2. StaticCONESTA(...)
3. FISTA(...)
4. ISTA(...)
Default is CONESTA(...).
algorithm_params : A dict. The dictionary algorithm_params contains
parameters that should be set in the algorithm. Passing
algorithm=CONESTA(**params) is equivalent to passing
algorithm=CONESTA() and algorithm_params=params. Default is an
empty dictionary.
class_weight : Dict, 'auto' or None. If 'auto', class weights will be
given inverse proportional to the frequency of the class in
the data. If a dictionary is given, keys are classes and values
are corresponding class weights. If None is given, the class
weights will be uniform.
penalty_start : Non-negative integer. The number of columns, variables
etc., to be exempt from penalisation. Equivalently, the first
index to be penalised. Default is 0, all columns are included.
mean : Boolean. Whether to compute the squared loss or the mean squared
loss. Default is True, the mean squared loss.
Examples
--------
>>> import numpy as np
>>> import parsimony.estimators as estimators
>>> import parsimony.algorithms.proximal as proximal
>>> import parsimony.functions.nesterov.tv as total_variation
>>> shape = (1, 4, 4)
>>> n = 10
>>> p = shape[0] * shape[1] * shape[2]
>>>
>>> np.random.seed(42)
>>> X = np.random.rand(n, p)
>>> y = np.random.randint(0, 2, (n, 1))
>>> l1 = 0.1 # L1 coefficient
>>> l2 = 0.9 # Ridge coefficient
>>> tv = 1.0 # TV coefficient
>>> A, n_compacts = total_variation.linear_operator_from_shape(shape)
>>> lr = estimators.LogisticRegressionL1L2TV(l1, l2, tv, A,
... algorithm=proximal.StaticCONESTA(max_iter=1000),
... mean=False)
>>> res = lr.fit(X, y)
>>> error = lr.score(X, y)
>>> print "error = ", error
error = 0.7
>>> lr = estimators.LogisticRegressionL1L2TV(l1, l2, tv, A,
... algorithm=proximal.FISTA(max_iter=1000),
... mean=False)
>>> lr = lr.fit(X, y)
>>> error = lr.score(X, y)
>>> print "error = ", error
error = 0.7
>>> lr = estimators.LogisticRegressionL1L2TV(l1, l2, tv, A,
... algorithm=proximal.ISTA(max_iter=1000),
... mean=False)
>>> lr = lr.fit(X, y)
>>> error = lr.score(X, y)
>>> print "error = ", error
error = 0.7
|
__init__(self,
l1,
l2,
tv,
A=None,
mu=5e-08,
algorithm=None,
algorithm_params={ } ,
class_weight=None,
penalty_start=0,
mean=True)
x.__init__(...) initializes x; see help(type(x)) for signature |
source code
|
|
|
|
|
fit(self,
X,
y,
beta=None,
sample_weight=None)
Fit the estimator to the data. |
source code
|
|
Inherited from LogisticRegressionEstimator :
predict ,
predict_probability ,
score
Inherited from BaseEstimator :
get_info ,
parameters ,
set_params
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__repr__ ,
__setattr__ ,
__sizeof__ ,
__str__ ,
__subclasshook__
|
Inherited from object :
__class__
|
__init__(self,
l1,
l2,
tv,
A=None,
mu=5e-08,
algorithm=None,
algorithm_params={ } ,
class_weight=None,
penalty_start=0,
mean=True)
(Constructor)
| source code
|
x.__init__(...) initializes x; see help(type(x)) for signature
- Overrides:
object.__init__
- (inherited documentation)
|