Package parsimony :: Package functions :: Module properties :: Class LipschitzContinuousGradient
[hide private]
[frames] | no frames]

Class LipschitzContinuousGradient

source code

object --+
         |
        LipschitzContinuousGradient
Known Subclasses:

Nested Classes [hide private]
  __metaclass__
Metaclass for defining Abstract Base Classes (ABCs).
Instance Methods [hide private]
 
L(self)
Lipschitz constant of the gradient.
source code
 
approx_L(self, shape, max_iter=10000)
Monte Carlo approximation of the Lipschitz constant.
source code

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __init__, __new__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__, __subclasshook__

Class Variables [hide private]
  __abstractmethods__ = frozenset(['L'])
  _abc_cache = <_weakrefset.WeakSet object at 0x30d8710>
  _abc_negative_cache = <_weakrefset.WeakSet object at 0x30d8790>
  _abc_negative_cache_version = 10
  _abc_registry = <_weakrefset.WeakSet object at 0x30d8650>
Properties [hide private]

Inherited from object: __class__

Method Details [hide private]

L(self)

source code 

Lipschitz constant of the gradient.

Decorators:
  • @abc.abstractmethod

approx_L(self, shape, max_iter=10000)

source code 
Monte Carlo approximation of the Lipschitz constant.

Warning: This will not yield a good approximation within reasonable
time for very large data sets. Use only if you know what you are doing.

Parameters
----------
shape : List or tuple. Usually has the form (p, 1). The shape of the
        points which we draw randomly.