Package parsimony :: Package functions :: Module combinedfunctions :: Class LogisticRegressionL1L2GL
[hide private]
[frames] | no frames]

Class LogisticRegressionL1L2GL

source code

                            object --+                
                                     |                
                   properties.Function --+            
                                         |            
              properties.CompositeFunction --+        
                                             |        
                            object --+       |        
                                     |       |        
                   properties.Gradient --+   |        
                                         |   |        
                            object --+   |   |        
                                     |   |   |        
properties.LipschitzContinuousGradient --+   |        
                                         |   |        
                            object --+   |   |        
                                     |   |   |        
                properties.Eigenvalues --+   |        
                                         |   |        
                            object --+   |   |        
                                     |   |   |        
           properties.ProximalOperator --+   |        
                                         |   |        
               properties.NesterovFunction --+        
                                             |        
                                object --+   |        
                                         |   |        
               properties.ProximalOperator --+        
                                             |        
                                object --+   |        
                                         |   |        
                   properties.Continuation --+        
                                             |        
                                object --+   |        
                                         |   |        
                   properties.DualFunction --+        
                                             |        
                                object --+   |        
                                         |   |        
                 properties.StronglyConvex --+        
                                             |        
                                object --+   |        
                                         |   |        
                       properties.StepSize --+        
                                             |        
                        LinearRegressionL1L2TV --+    
                                                 |    
                            LinearRegressionL1L2GL --+
                                                     |
                                                    LogisticRegressionL1L2GL

Combination (sum) of RidgeLogisticRegression, L1 and TotalVariation.

Instance Methods [hide private]
 
__init__(self, X, y, l1, l2, gl, A=None, mu=0.0, weights=None, penalty_start=0, mean=True)
Parameters ---------- X : Numpy array.
source code

Inherited from LinearRegressionL1L2GL: A, Aa, L, M, betahat, eps_max, eps_opt, estimate_mu, f, fmu, gap, get_mu, grad, mu_max, mu_opt, phi, project, prox, reset, set_mu, set_params, step

Inherited from LinearRegressionL1L2TV: parameter

Inherited from properties.Function: get_params

Inherited from properties.NesterovFunction: alpha, lA, lambda_max

Inherited from properties.Gradient: approx_grad

Inherited from properties.LipschitzContinuousGradient: approx_L

Inherited from properties.Eigenvalues: lambda_min

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__, __subclasshook__

Class Variables [hide private]

Inherited from LinearRegressionL1L2TV: __abstractmethods__

Inherited from properties.CompositeFunction: __metaclass__

Properties [hide private]

Inherited from object: __class__

Method Details [hide private]

__init__(self, X, y, l1, l2, gl, A=None, mu=0.0, weights=None, penalty_start=0, mean=True)
(Constructor)

source code 

Parameters
----------
X : Numpy array. The X matrix (n-by-p) for the logistic regression.

y : Numpy array. The y vector for the logistic regression.

l1 : Non-negative float. The Lagrange multiplier, or regularisation
        constant, for the L1 penalty.

l2 : Non-negative float. The Lagrange multiplier, or regularisation
        constant, for the ridge (L2) penalty.

gl : Non-negative float. The Lagrange multiplier, or regularisation
        constant, of the smoothed function.

A : Numpy array (usually sparse). The linear operator for the Nesterov
        formulation for GL. May not be None!

mu : Non-negative float. The regularisation constant for the smoothing
        of the GL function.

weights: List with n elements. The sample's weights.

penalty_start : Non-negative integer. The number of columns, variables
        etc., to except from penalisation. Equivalently, the first
        index to be penalised. Default is 0, all columns are included.

Overrides: object.__init__