Home | Trees | Indices | Help |
---|
|
object --+ | properties.Function --+ | properties.CompositeFunction --+ | object --+ | | | properties.Gradient --+ | | | object --+ | | | | | properties.LipschitzContinuousGradient --+ | | | object --+ | | | | | properties.Eigenvalues --+ | | | object --+ | | | | | properties.ProximalOperator --+ | | | properties.NesterovFunction --+ | object --+ | | | properties.ProximalOperator --+ | object --+ | | | properties.Continuation --+ | object --+ | | | properties.DualFunction --+ | object --+ | | | properties.StronglyConvex --+ | object --+ | | | properties.StepSize --+ | LinearRegressionL1L2TV --+ | LinearRegressionL1L2GL --+ | LogisticRegressionL1L2GL
Combination (sum) of RidgeLogisticRegression, L1 and TotalVariation.
|
|||
|
|||
Inherited from Inherited from Inherited from Inherited from Inherited from Inherited from Inherited from Inherited from |
|
|||
Inherited from Inherited from Inherited from |
|
|||
Inherited from |
|
Parameters ---------- X : Numpy array. The X matrix (n-by-p) for the logistic regression. y : Numpy array. The y vector for the logistic regression. l1 : Non-negative float. The Lagrange multiplier, or regularisation constant, for the L1 penalty. l2 : Non-negative float. The Lagrange multiplier, or regularisation constant, for the ridge (L2) penalty. gl : Non-negative float. The Lagrange multiplier, or regularisation constant, of the smoothed function. A : Numpy array (usually sparse). The linear operator for the Nesterov formulation for GL. May not be None! mu : Non-negative float. The regularisation constant for the smoothing of the GL function. weights: List with n elements. The sample's weights. penalty_start : Non-negative integer. The number of columns, variables etc., to except from penalisation. Equivalently, the first index to be penalised. Default is 0, all columns are included.
|
Home | Trees | Indices | Help |
---|
Generated by Epydoc 3.0.1 on Mon Apr 6 23:52:11 2015 | http://epydoc.sourceforge.net |