Home | Trees | Indices | Help |
---|
|
object --+ | properties.Function --+ | properties.CompositeFunction --+ | object --+ | | | properties.Gradient --+ | object --+ | | | properties.StepSize --+ | object --+ | | | properties.ProximalOperator --+ | MultiblockFunctionWrapper
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from Inherited from |
|
|||
__abstractmethods__ =
|
|||
_abc_negative_cache_version = 14
|
|||
Inherited from Inherited from |
|
|||
Inherited from |
|
x.__init__(...) initializes x; see help(type(x)) for signature
|
Function value. From the interface "Function". Parameters ---------- w : Numpy array (p-by-1). The point at which to evaluate the function.
|
Gradient of the function. Parameters ---------- w : Numpy array (p-by-1). The point at which to evaluate the gradient.
|
The proximal operator corresponding to the function. Parameters ---------- w : Numpy array (p-by-1). The point at which to apply the proximal operator. factor : Positive float. A factor by which the Lagrange multiplier is scaled. This is usually the step size.
|
The step size to use in descent methods. Parameters ---------- w : Numpy array. The point at which to determine the step size.
|
Home | Trees | Indices | Help |
---|
Generated by Epydoc 3.0.1 on Mon Apr 6 23:52:11 2015 | http://epydoc.sourceforge.net |