Home | Trees | Indices | Help |
---|
|
object --+ | properties.Function --+ | properties.CompositeFunction --+ | object --+ | | | properties.Gradient --+ | object --+ | | | properties.StepSize --+ | object --+ | | | properties.ProximalOperator --+ | MultiblockFunctionWrapper --+ | object --+ | | | properties.Gradient --+ | | | object --+ | | | | | properties.LipschitzContinuousGradient --+ | | | object --+ | | | | | properties.Eigenvalues --+ | | | object --+ | | | | | properties.ProximalOperator --+ | | | properties.NesterovFunction --+ | object --+ | | | properties.Continuation --+ | MultiblockNesterovFunctionWrapper
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from Inherited from Inherited from Inherited from Inherited from Inherited from |
|
|||
Inherited from Inherited from Inherited from Inherited from |
|
|||
Inherited from |
|
x.__init__(...) initializes x; see help(type(x)) for signature
|
|
Returns the smoothed function value. From the interface "NesterovFunction". Parameters ---------- beta : Numpy array. A weight vector. mu : Non-negative float. The regularisation constant for the smoothing.
|
Function value with known alpha. From the interface "NesterovFunction".
|
Returns the regularisation constant for the smoothing. From the interface "NesterovFunction".
|
Sets the regularisation constant for the smoothing. From the interface "NesterovFunction". Parameters ---------- mu : Non-negative float. The regularisation constant for the smoothing to use from now on. Returns ------- old_mu : Non-negative float. The old regularisation constant for the smoothing that was overwritten and no longer is used.
|
Dual variable of the Nesterov function. From the interface "NesterovFunction". Parameters ---------- beta : Numpy array (p-by-1). The variable for which to compute the dual variable alpha.
|
Linear operator of the Nesterov function. From the interface "NesterovFunction".
|
Compute A'*alpha. From the interface "NesterovFunction". Parameters ---------- alpha : Numpy array (x-by-1). The dual variable alpha.
|
Projection onto the compact space of the Nesterov function. From the interface "NesterovFunction". Parameters ---------- alpha : Numpy array (x-by-1). The not-yet-projected dual variable alpha.
|
The maximum value of the regularisation of the dual variable. We have M = max_{alpha in K} 0.5*|alpha|²_2. From the interface "NesterovFunction".
|
Compute a "good" value of mu with respect to the given beta. From the interface "NesterovFunction". Parameters ---------- beta : Numpy array (p-by-1). The primal variable at which to compute a feasible value of mu.
|
The optimal value of mu given epsilon. Parameters ---------- eps : Positive float. The desired precision. Returns ------- mu : Positive float. The optimal regularisation parameter. From the interface "Continuation".
|
The optimal value of epsilon given mu. Parameters ---------- mu : Positive float. The regularisation constant of the smoothing. Returns ------- eps : Positive float. The optimal precision. From the interface "Continuation".
|
The maximum value of epsilon. From the interface "Continuation". Parameters ---------- mu : Positive float. The regularisation constant of the smoothing. Returns ------- eps : Positive float. The upper limit, the maximum, precision.
|
The maximum value of mu. From the interface "Continuation". Parameters ---------- eps : Positive float. The maximum precision of the smoothing. Returns ------- mu : Positive float. The upper limit, the maximum, of the regularisation constant of the smoothing.
|
Home | Trees | Indices | Help |
---|
Generated by Epydoc 3.0.1 on Mon Apr 6 23:52:11 2015 | http://epydoc.sourceforge.net |